What is an I/O error?
Camera drivers are interfaced to the soc-camera core and to host drivers over the v4l2-subdev API, which is completely functional, it doesn’t pass any data. Therefore all camera drivers shall reply to.gfmt requests with their current output geometry. Find firmware updates, drivers and software downloads for Cameras & Camcorders.
I/O device error is short for Input-Output Error and it occurs when the OS is not able to perform an input-output action when accessing a drive.
This error can occur with various types of hardware devices such as USB’s, internal and external hard drives, SD cards or even CD/ DVD. The most common I/O error messages are
- 'The request could not be performed because of an I/O error'
- I/O Error codes: error 21, error 103, error 105, error 131
- 'The directory name is invalid' error
There are multiple reasons for this error to occur and they are explained as follows
- The hardware device is damaged
- The hardware drivers are corrupt or incompatible
- Connection issues such as a faulty cable
- USB controllers have become unstable or corrupt
How to Resolve I/O Error?
There are a series of checks and troubleshooting steps that you can perform on after the other to fix the I/O device error on your Windows 10, 8, 7, and all the earlier versions of the Windows operating system.
Note: If in case you have lost any data such as documents, photos or videos click here for the recovery option, before troubleshooting the error. This is recommended because it is your last chance of recovering the data.
Check if the Cables are Connected Properly
Make sure that the cable connecting USB to the computer works properly. If the cable is faulty, the drive will not work. Try another cable and also try connecting the USB to another USB port to make sure the port is not defective.
If this doesn't help you solve the I/O error, proceed to the next step.
Perform a Clean Boot
Try to clean boot your system to check if a driver conflicts with the drive. Drivers are very crucial for the smooth reading and writing of the USB drive. To perform a clean boot, perform the following steps.
- Press Windows + R to open Run
- Type msconfig and click Ok
- On the General tab > Selective Startup
- Clear the Load Startup items and click on Services tab
- Select Hide All Microsoft Services checkbox
- Click Disable All
- Click Startup tab, and open Task Manager
- On the Startup tab, right-click each enabled startup item and select Disable
- Click Ok and restart your system
If a clean boot works properly, there may be problems with a driver or program on your computer.
Reinstall USB Controllers
At times the USB drive option might not be showing up on your computer, this is because of a problem with the USB controllers. By reinstalling the USB controllers you will be able to resolve the I/O error on the computer
- Click Windows + X to open the power users menu
- Click on Computer Management > Device Manager
- Expand Universal Serial Bus controllers. Right-click on a device and click Uninstall
- Repeat for each device and once complete, restart your computer. Your USB controllers will automatically install.
If this step resolved the error you are done. If not proceed to the next step.
Check the Status of the Device in Device Manager
- Press Windows + X to open the power users menu and click Computer Management.
- Then select Device Manager
Check the status of the USB here to ensure the device is working properly. Device Manager will identify if there is any problem or a software conflict.
Update device drivers if they are outdated or corrupt. If this does not solve the problem, there may be an issue with the USB device. If you are being prompted with 'Format to access the Drive' or any similar message, learn how to fix a USB drive without formatting. Thus, if you proceed with formatting, it will lead to permanent data loss.
Replace the USB Drive
If none of the above methods solve the issue, your USB device may be faulty. It is a good idea to recover data and replace your device. If you’re receiving the error, it is likely that data on your USB is inaccessible.
Data recovery using Remo Recover
There a number of tools available to recover data from inaccessible USB’s. Remo Recover is one of the best tools available. It can recover data from inaccessible and corrupt USB drives. It uses powerful algorithms to scan your drive and recover data.
In addition to USB, it can also be used to retrieve data from other storage devices such as external and internal hard drives, memory cards, etc. It is compatible with all versions of Windows OS including Windows 10.
Remo Recover is a simple to use tool with a user-friendly interface. Refer to recover data from unreadable USB for a detailed guide to the recovery process.
-->Windows 10 provides an inbox USB Video Class (UVC) driver for devices compliant with USB Video Class specification (versions 1.0 to 1.5). This driver supports color and sensor type cameras. This document outlines how to expose certain capabilities of a UVC compliant camera to the applications through the inbox driver.
Terminology
Keyword | Description |
---|---|
UVC | USB Video Class |
UVC driver | USBVideo.sys driver that ships with the OS |
IR | Infrared |
Color camera | The camera that outputs color streams (for example, RGB or YUV cameras) |
Sensor camera | The camera that outputs non-color streams (for example, IR or Depth cameras) |
BOS | Binary Device Object Store |
MS OS 2.0 Descriptor | Microsoft platform specific BOS device capability descriptor |
Sensor Cameras
Windows supports two categories of cameras. One is a color camera and the other one is a non-color sensor camera. RGB or YUV cameras are categorized as color cameras and non-color cameras like gray scale, IR and Depth cameras are categorized as sensor cameras. The UVC driver supports both types of cameras. We recommend the camera firmware specify a value based on which the UVC driver would register the camera under one or both supported categories.
A camera that supports color only format types should be registered under KSCATEGORY_VIDEO_CAMERA. A camera that supports IR or Depth-only format types should be registered under KSCATEGORY_SENSOR_CAMERA. A camera that supports both color and non-color format types should be registered under KSCATEGORY_VIDEO_CAMERA and KSCATEGORY_SENSOR_CAMERA. This categorization helps applications to select the camera that they want to work with.
A UVC camera can specify its category preference through attributes, SensorCameraMode and SkipCameraEnumeration, in its BOS MS OS 2.0 Descriptor detailed in following sections.
The attribute SensorCameraMode takes a value 1 or 2.
A value of 1, will register the device under KSCATEGORY_SENSOR_CAMERA. In addition to this specify a value of 1 for SkipCameraEnumeration to make the camera available to applications looking only for sensor cameras. A camera that exposes only sensor camera media types should use this value.
A value of 2 for SensorCameraMode, will register the device under KSCATEGORY_SENSOR_CAMERA & KSCATEGORY_VIDEO_CAMERA. This will make the camera available for applications looking for either sensor and color cameras. A camera that exposes both sensor camera and color camera media types should use this value.
We recommend you specify the above-mentioned registry value using the BOS descriptor. Refer to the Example composite device section below for a sample BOS descriptor with a platform specific MS OS 2.0 descriptor.
If you cannot update the device firmware as described above, you can use a custom INF and specify that your camera need to be registered as a sensor camera by specifying a value for SensorCameraMode and SkipCameraEnumeration as follows:
A custom INF file (based on the inbox UVC driver) must include the following AddReg entries:
SensorCameraMode: REG_DWORD: 1 (to register as a sensor camera)
SkipCameraEnumeration: REG_DWORD: 1 (make it available only for IR applications)
An example of the custom INF section is as follows:
If the SensorCameraMode and SkipCameraEnumeration attributes are not specified in the firmware or the INF, the camera will be registered as a color camera and will be visible only to color camera aware applications.
IR stream
The Windows inbox USB video class (UVC) driver supports cameras that capture the scene in YUV format and transmit the pixel data over USB as uncompressed YUV or as compressed MJPEG frames.
The following format type GUIDs should be specified in the stream video format descriptor, as defined in the WDK ksmedia.h header file:
Type | Description |
---|---|
KSDATAFORMAT_SUBTYPE_L8_IR | Uncompressed 8 bit luma plane. This type maps to MFVideoFormat_L8. |
KSDATAFORMAT_SUBTYPE_L16_IR | Uncompressed 16 bit luma plane. This type maps to MFVideoFormat_L16. |
KSDATAFORMAT_SUBTYPE_MJPG_IR | Compressed MJPEG frames. Media Foundation converts this into NV12 uncompressed frames and uses only the luma plane. |
When these format type GUIDs are specified in the guidFormat field of the frame descriptor, the Media Foundation capture pipeline marks the stream as IR stream. Applications written with Media Foundation FrameReader API will be able to consume the IR stream. No scaling or conversions of the IR frames are supported by the pipeline for IR streams.
A stream exposing IR format types must not expose RGB or Depth format types.
Note
IR streams will show up as regular capture streams in DShow.
Depth stream
Windows inbox USB Video Class driver supports cameras that produce Depth streams. These cameras capture the depth information (For example, time of flight) of the scene and transmit the depth map as uncompressed YUV frames over USB. The following format type GUID should be specified in the stream video format descriptor, as defined in the WDK ksmedia.h header file:
Type | Description |
---|---|
KSDATAFORMAT_SUBTYPE_D16 | 16 bit depth map values. This type is identical to MFVideoFormat_D16. The values are in millimeters. |
When the format type GUID is specified in the guidFormat member of the frame descriptor, the Media Foundation capture pipeline marks the stream as depth stream. Applications written with FrameReader API will be able to consume the depth stream. No scaling or conversions of the depth frames are supported by the pipeline for depth streams.
A stream exposing Depth format types must not expose RGB or IR format types.
Note
Depth streams show up as regular capture streams in DShow.
Grouping cameras
Windows supports grouping of cameras based on their container ID to aid applications work with related cameras. For example, an IR camera and a Color camera present on the same physical device can be exposed to the OS as related cameras. This will make applications like Windows Hello to make use of the related cameras for their scenarios.
The relation between the camera functions could be specified in the camera's BOS descriptor in firmware. The UVC driver will make use of this information and expose these camera functions as related. This will make the OS camera stack expose them as a related group of cameras to the applications.
The camera firmware must specify a UVC-FSSensorGroupID, which is a GUID in string form with the curly parenthesis. The cameras that have the same UVC-FSSensorGroupID will be grouped together.
The sensor group can be given a name by specifying UVC-FSSensorGroupName, a Unicode string, in the firmware.
Refer to the Example composite device section below for an illustrative example BOS that specifies UVC-FSSensorGroupID and UVC-FSSensorGroupName.
If you cannot update the device firmware as described above, you can use a custom INF and specify that your camera is part of a sensor group by specifying a sensor group ID and name as follows. The custom INF file (based on the inbox UVC driver) must include the following AddReg entries:
FSSensorGroupID: REG_SZ: '{your sensor group ID GUID}'
FSSensorGroupName: REG_SZ: 'your sensor group friendly name'
An example for the custom INF section would be as follows:
Note
Sensor Groups are not supported in DShow capture pipeline.
Method 2 or Method 3 still capture support
UVC specification does provide a mechanism to specify if the video streaming interface supports Method 1/2/3 type still image capture. To make the OS take advantage of the device's Method 2/3 still image capture support, through UVC driver, the device firmware could specify a value in the BOS descriptor.
The value to specify to enable Method 2/3 still image capture is a DWORD named UVC-EnableDependentStillPinCapture. Specify its value using the BOS descriptor. The Example composite device below illustrates enabling still image capture with an example BOS descriptor.
If you cannot update the device firmware as described above, you can use a custom INF to specify that your camera supports Method 2 or Method 3 still capture method.
The custom INF file (based on either custom UVC driver or inbox UVC driver) must include the following AddReg entry:
EnableDependentStillPinCapture: REG_DWORD: 0x0 (Disabled) to 0x1 (Enabled)
When this entry is set to Enabled (0x1), the capture pipeline will leverage Method 2/3 for still image capture (assuming the firmware also advertises support for Method 2/3 as specified by UVC spec).
An example for the custom INF section is as follows:
Device MFT Chaining
Device MFT is the recommended user mode plugin mechanism for IHVs and OEMs to extend the camera functionality on Windows. Prior to Windows 10, version 1703, the camera pipeline supported only one DMFT extension plugin. Starting with Windows 10, version 1703, the Windows camera pipeline supports an optional chain of DMFTs with maximum of three DMFTs. This provides greater flexibility for OEMs and IHVs to provide value-add in the form of post processing camera streams. For example, a device could use PDMFT along with an IHV DMFT and an OEM DMFT. Following figure illustrates the architecture involving a chain of DMFTs.
Capture samples flow from camera driver to DevProxy, then go through the DMFT chains. Every DMFT in the chain has a chance to process the sample. If the DMFT doesn't want to process the sample, it can act as a pass-through just pass the sample to next DMFT.
For controls like KsProperty, the call will go up stream – the last DMFT in the chain will get the call first, the call can be handled there or get passed to previous DMFT in the chain.
Errors will be propagated from DMFT to DTM then to applications. For IHV/OEM DMFTs, any one of the DMFT fails to instantiate will be a fatal error for DTM.
Requirements on DMFTs:
The input pin count of the DMFT must match with the output pin count of previous DMFT, otherwise DTM would fail during initialization. However, the input and output pin counts of same DMFT do not need to match.
DMFT needs to support interfaces - IMFDeviceTransform, IMFShutdown, IMFRealTimeClientEx, IKsControl and IMFMediaEventGenerator; IMFTransform may need to be supported if there is MFT0 configured or the next DMFT in the chain requires IMFTransform support.
On 64-bit systems that do not make use of Frame Server, both 32-bit and 64-bit DMFTs must be registered. Given that a USB camera might get plugged into an arbitrary system, for 'external' (or non-inbox) USB cameras, the USB camera vendor should supply both 32-bit and 64-bit DMFTs.
Configuring the DMFT chain
A camera device can optionally supply a DMFT COM object in a DLL using a custom INF file that uses sections of the inbox USBVideo.INF.
In the custom .INF file's 'Interface AddReg' section, specify the DMFT CLSIDs by adding following registry entry:
CameraDeviceMftCLSIDChain (REG_MULTI_SZ) %Dmft0.CLSID%,%Dmft.CLSID%,%Dmft2.CLSID%
As shown in the sample INF settings below (replace the %Dmft0.CLSID% and % Dmft1.CLSID% with the actual CLSID strings you are using for your DMFTs), there are maximum of 2 CLSIDs allowed in Windows 10, version 1703, and the first one is closest to DevProxy and the last one is the last DMFT in the chain.
Platform DMFT CLSID is {3D096DDE-8971-4AD5-98F9-C74F56492630}.
Some example CameraDeviceMftCLSIDChain settings:
No IHV/OEM DMFT or Platform DMFT
- CameraDeviceMftCLSIDChain = ' (or no need to specify this registry entry)
IHV/OEM DMFT
- CameraDeviceMftCLSIDChain = %Dmft.CLSID%
Platform DMFT <-> IHV/OEM DMFT
CameraDeviceMftCLSIDChain = '{3D096DDE-8971-4AD5-98F9-C74F56492630}',%Dmft.CLSID%
Here is a screen shot of the result registry key for an USB camera with Platform DMFT and an DMFT (with GUID {D671BE6C-FDB8-424F-81D7-03F5B1CE2CC7}) in the chain.
IHV/OEM DMFT0 <-> IHV/OEM DMFT1
- CameraDeviceMftCLSIDChain = %Dmft0.CLSID%,%Dmft1.CLSID%,
Note
Drivers I-o Data Cameras Wireless
The CameraDeviceMftCLSIDChain can have a maximum 2 of CLSIDs.
If CameraDeviceMftCLSIDChain is configured, the legacy CameraDeviceMftCLSID settings will be skipped by DTM.
If CameraDeviceMftCLSIDChain is not configured and the legacy CameraDeviceMftCLSID is configured, then the chain would look like (if its USB camera and supported by Platform DMFT and Platform DMFT is enabled) DevProxy <–> Platform DMFT <–> OEM/IHV DMFT or (if the camera is not supported by Platform DMFT or Platform DMFT is disabled) DevProxy <-> OEM/IHV DMFT.
Example INF file settings:
Platform Device MFT
Starting in Windows 10, version 1703, Windows provides an inbox Device MFT for UVC cameras known as Platform DMFT (PDMFT) on an opt-in basis. This DMFT allows IHVs and OEMs to take advantage of Windows provided post processing algorithms.
Features supported by Platform DMFT | Windows Release |
---|---|
Enables face-based Region of Interest (ROI) for 3A adjustments in ROI-capable USB cameras. | Windows 10, version 1703 |
Note
If the camera does not support UVC 1.5 based ROI, then the PDMFT will not load even if the device opted in to use PDMFT.
A UVC camera could opt-in to use platform DMFT by specifying the EnablePlatformDmft through BOS descriptor.
The value to specify to enable Platform DMFT is a DWORD by name UVC-EnablePlatformDmft and specify its value using the BOS descriptor. The Example composite device section below illustrates enabling Platform DMFT with an example BOS descriptor.
If you cannot update the device firmware as described above, you can use a custom INF file to enable Platform DMFT for the device.
The custom INF file (based on either custom UVC driver or inbox UVC driver) must include the following AddReg entry:
EnablePlatformDmft: REG_DWORD: 0x0 (Disabled) to 0x1 (Enabled)
When this entry is set to Enabled (0x1), the capture pipeline will use inbox Platform DMFT for the device. The following shows an example of this custom INF section:
Drivers I-o Data Cameras App
In Windows 10, version 1703, if a device opts in to use PDMFT then all features that are supported by the PDMFT are enabled (based on the device capabilities). Granular configuration of PDMFT features is not supported.
Face Auth Profile via MS OS Descriptors
Windows 10 RS5 now enforces a Face Auth Profile V2 requirement for any camera with Windows Hello support. For MIPI based systems with custom camera driver stack, this support can be published either via an INF (or an Extension INF) or through a user mode plug in (Device MFT).
However, for USB Video devices, a constraint with UVC based cameras is that for Windows 10 19H1, custom camera drivers are not allowed. All UVC based cameras must use the inbox USB Video Class driver and any vendor extensions must be implemented in the form of a Device MFT.
For many OEM/ODMs, the preferred approach for camera modules is to implement much of the functionality within the module's firmware, i.e. via Microsoft OS Descriptors.
The following cameras are supported for publish Face Auth Profile via the MSOS Descriptors (also called BOS descriptors):
- RGB only camera to be used in Sensor Group with a separate IR camera.
- IR only camera to be used in a Sensor Group with a separate RGB camera.
- RGB+IR camera with separate IR and RGB pins.
Note:If the camera firmware cannot meet one of the three requirements detailed above, the ODM/OEM must use an Extension INF to declare Camera Profile V2.
Example Microsoft OS Descriptor Layout
Examples are included below for the following specifications:
- Microsoft OS extended descriptors specification 1.0
- Microsoft OS 2.0 descriptors specification
Microsoft OS Extended Descriptor 1.0 Specification
The extended properties OS descriptor has two components
- A fixed-length header section
- One or more variable length custom properties sections, which follows the header section
Microsoft OS 1.0 Descriptor Header Section
The Header Section describes a single custom property (Face Auth Profile).
Offset | Field | Size (bytes) | Value | Description |
---|---|---|---|---|
0 | dwLength | 4 | <> | |
4 | bcdVersion | 2 | 0x0100 | Version 1.0 |
6 | wIndex | 2 | 0x0005 | Extended property OS descriptor |
8 | wCount | 2 | 0x0001 | One custom property |
Microsoft OS 1.0 Descriptor Custom Property Section
Offset | Field | Size (bytes) | Value | Description |
---|---|---|---|---|
0 | dwSize | 4 | 0x00000036 (54) | Total size (in bytes) for this property. |
4 | dwPropertyDataType | 4 | 0x00000004 | REG_DWORD_LITTLE_ENDIAN |
8 | wPropertyNameLength | 2 | 0x00000024 (36) | Size (in bytes) of the property name. |
10 | bPropertyName | 36 | UVC-CPV2FaceAuth | 'UVC-CPV2FaceAuth' string in Unicode. |
46 | dwPropertyDataLength | 4 | 0x00000004 | 4 bytes for property data (sizeof(DWORD)). |
50 | bPropertyData | 4 | See Data Schema Below | See Data Schema Below. |
Payload Schema
The UVC-CPV2FaceAuth data payload is a 32-bit unsigned integer. The high order 16-bit represents the 0 based index of the media type list exposed by the RGB pin. The low order 16-bit represents the 0 based index of the media type list exposed by the IR pin.
For example, a Type 3 Camera which exposes the following media types, in the order declared from the RGB pin:
- YUY2, 640x480@30fps
- MJPG, 1280x720@30fps
- MJPG, 800x600@30fps
- MJPG, 1920x1080@30fps
And the following media type for IR:
- L8, 480x480@30fps
- L8, 480x480@15fps
- L8, 480x480@10fps
A payload value of 0x00010000, will result in the following Face Auth Profile being published:
Pin0:(RES1280,720;FRT30,1;SUTMJPG)// Second media type (0x0001)
Pin1:(RES480,480;FRT30,1;SUTL8)// First media type (0x0000)
Note: At the time of this writing, Windows Hello has a minimum requirement of 480x480@7.5fps for the RGB stream and 340x340@15fps for the IR stream. IHV/OEMs are required to select media types that satisfy this requirement when enabling Face Auth Profile.
Type 1 Camera Sample
For a Type 1 Camera, since there is no IR pin (with the expectation that a Type 1 Camera will be paired to a Type 2 Camera on the machine in a Sensor Group), only the RGB media type index is published. For the IR media type index, the low order 16-bit value of the payload must be set to 0xFFFF.
For example, if a Type 1 Camera exposed the following list of media types:
- YUY2, 640x480@30fps
- MJPG, 1280x720@30fps
- MJPG, 800x600@30fps
- MJPG, 1920x1080@30fps
To publish the CPV2FaceAuth using the MJPG, 1280x720@30fps media type, the payload must be set to 0x0001FFFF.
Type 2 Camera Sample
For a Type 2 Camera, the high order 16-bit must be set to 0xFFFF, with the low order 16-bit indicating the IR media type to be used.
For example, for a Type 2 Camera with the following media types:
- L8, 480x480@30fps
- L8, 480x480@15fps
- L8, 480x480@10fps
If the first media type is used for Face Auth, the value must be: 0xFFFF0000.
Microsoft OS Extended Descriptor 2.0 Specification
MSOS Extended Descriptor 2.0 can be used to define the registry values to add Face Auth Profile support. This is done using the Microsoft OS 2.0 Registry Property Descriptor.
For the UVC-CPV2FaceAuth registry entry, the following shows a sample MSOS 2.0 descriptor set:
When UVC-CPV2FaceAuth registry entry is added, devices do not need to publish the EnableDshowRedirection registry entry as described in DShow Bridge implementation guidance for UVC devices.
However, if the device vendor must support older versions of Windows and/or need to enable MJPEG decompression within Frame Server, the EnableDshowRedirection registry entry must be added.
Sensor Group Generation
When OEMs build systems using Type 1 and Type 2 Cameras to provide both RGB and IR streams for Windows Hello support, OEMs must declare the two cameras to be part of a synthesized Sensor Group.
This is done by declaring a FSSensorGroupId and FSSensorGroupName tag in an Extension INF to be created under the device interface property for each camera.
However, if Extension INF is not provided, ODMs may use the same MSOS Descriptors to publish the FSSensorGroupId and FSSensorGroupName values. The inbox Windows 10 USB Video Class driver will automatically take any MSOS Descriptor whose Payload Name has been prefixed with 'UVC-' and migrate the tag into the device interface property store (removing the 'UVC-' prefix).
So a Type 1 and Type 2 Camera which publishes the following will allow the OS to synthesize the cameras into a multi-device Sensor Group for use with Windows Hello:
UVC-FSSensorGroupId
UVC-FSSensorGroupName
The payload for each tag must be a Unicode String. The UVC-FSSensorGroupId payload must be a GUID string in the following format:
{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}
The value of the GUID must be the same between the Type 1 and Type 2 Cameras and both cameras must be added to the same physical chassis. For built in cameras, the physical chassis is the computer itself. For external cameras, both Type 1 and Type 2 Camera modules must be built into the same physical device connected to the computer.
Custom Device Interface Categories for Sensor Groups
Starting in 19H1, Windows is providing an IHV/OEM specified extension mechanism to allow publishing synthesized Sensor Groups into any custom or pre-defined category. Generation of a Sensor Group is defined by IHV/OEMs providing a Sensor Group ID key in the custom INF:
FSSensorGroupId: {Custom GUID}
FSSensorGroupName: <Friendly Name used for Sensor Group>
Drivers I-o Data Cameras Software
In addition to the two above AddReg entries in the INF, a new AddReg entry is defined for custom categories:
FSSensorGroupCategoryList: {GUID};{GUID};…;{GUID}
Multiple categories are defined using a semi-colon (;) delimited GUID list.
Each device declaring a matching FSSensorGroupId, must declare the same FSSensorGroupCategoryList. If the list does not match, all lists will be ignored and the Sensor Group will be published by default into KSCATEGORY_SENSOR_GROUP as if no custom categories were defined.
Camera Rotation
See Camera Device Orientation
UVC Control Cache
See UVC Control Cache
BOS and MS OS 2.0 descriptor
UVC compliant camera can specify Windows specific device configuration values in a platform capability BOS descriptor in its firmware using Microsoft OS 2.0 Descriptors. Please refer the documentation on MS OS 2.0 descriptor to understand how to specify a valid BOS descriptor that conveys the device configuration to the OS.
Microsoft OS 2.0 Descriptor Set Header
Offset | Field | Size (bytes) | Description |
---|---|---|---|
0 | wLength | 2 | Length in bytes of this header, must be 10. |
2 | wDescriptorType | 2 | MSOS20_SET_HEADER_DESCRIPTOR |
4 | dwWindowsVersion | 4 | Windows version. |
8 | wTotalLength | 2 | The size of the entire MS OS 2.0 descriptor set including this header size. |
Microsoft OS 2.0 Registry Property Descriptor
Offset | Field | Size (bytes) | Description |
---|---|---|---|
0 | wLength | 2 | Length in bytes of this descriptor |
2 | wDescriptorType | 2 | MS_OS_20_FEATURE_REG_PROPERTY |
4 | wPropertyDataType | 2 | 0x04 (REG_DWORD_LITTLE_ENDIAN) |
6 | wPropertyNameLength | 2 | The length of the property name. |
8 | PropertyName | Variable | The name of the registry property. |
8+M | wPropertyDataLength | 2 | The length of the property data. |
10+M | PropertyData | Variable | Property Data |
When a valid MS OS 2.0 descriptor is specified in the firmware, the USB stack copies the configuration values into the device HW registry key show below:
UVC driver reads the configuration values from the device HW registry key and configures the device on the OS accordingly. For example, if the firmware specifies the device to be registered as a sensor camera using a configuration value, UVC driver registers the device just under that category.
Configuring UVC devices through platform BOS descriptor is a mechanism that was enabled in Windows 10, version 1703 to help UVC device vendors to configure the device without the need of an INF file on Windows OS.
Configuring UVC devices through custom INF is still supported and that takes precedence over BOS descriptor based mechanism. While specifying device properties through INF, you do not need to add the prefix 'UVC-'. This prefix is only needed for device properties that are specified through BOS descriptor and that are per interface instance specific. If your device needs user mode plugins like DMFT, then you need to supply an INF for installing the DMFT. It cannot be configured using firmware.
Currently supported configuration values through BOS descriptor
Configuration name | Type | Description |
---|---|---|
SensorCameraMode | REG_DWORD | Register the camera under a specific category. |
UVC-FSSensorGroupID UVC-FSSensorGroupName | REG_SZ | Group cameras with the same UVC-FSSensorGroupID |
UVC-EnableDependentStillPinCapture | REG_DWORD | To enable still capture Method 2/3 |
UVC-EnablePlatformDmft | REG_DWORD | To enable Platform DMFT |
When UVC driver sees the registry values with prefix 'UVC-', it populates the device's category interface instance registry key, with the same values without the prefix. The driver will do this for any variable specified by the firmware, not just the ones listed above.
For the OS to make use of the BOS Platform Device Capability and MS OS 2.0 descriptors, the device descriptor must specify the bcdUSB version to be 0x0210 or greater.
Example composite device
This section provides a BOS descriptor and a MS OS 2.0 descriptor for an example composite device with two camera functions. One function is a UVC color camera and the second function is a UVC IR camera.
The sample descriptors are as follows:
- Register the color camera function under KSCATEGORY_VIDEO_CAMERA
- Register the IR camera function under KSCATEGORY_SENSOR_CAMERA
- Enable color camera function still image capture
- Associates the color and IR camera functions as a group
Upon device enumeration, the USB stack retrieves the BOS descriptor from the device. Following the BOS descriptor is a platform specific device capability.
The BOS platform capability descriptor specifies:
- MS OS 2.0 descriptor platform capability GUID
- A vendor control code bMS_VendorCode (here is it set to 1. It can take any value the vendor prefers) to retrieve the MS OS 2.0 descriptor.
- This BOS descriptor is applicable for OS version Windows 10 and later.
After seeing the BOS descriptor, the USB stack will issue the vendor specific control request to retrieve the MS OS 2.0 descriptor.
Format of the control request to retrieve MS OS 2.0 vendor-specific descriptor:
bmRequestType | BRequest | wValue | WIndex | wLength | Data |
---|---|---|---|---|---|
1100 0000B | bMS_VendorCode | 0x00 | 0x07 | Length | Returned MS OS 2.0 Descriptor Set blob |
bmRequestType
- Data Transfer Direction – Device to Host
- Type – Vendor
- Recipient - Device
bRequest
The bMS_VendorCode value returned in the descriptor set information structure.
wValue
Set to 0x00.
wIndex
0x7 for MS_OS_20_DESCRIPTOR_INDEX.
wLength
Length of the MS OS 2.0 descriptor set, as returned in the BOS descriptor. 0x25C (604) in this example.
The device is expected to return the MS OS 2.0 descriptor like the one specified in USBVideoMSOS20DescriptorSet.
The USBVideoMSOS20DescriptorSet describes the color and IR functions. It specifies the following MS OS 2.0 Descriptor values:
- Set Header
- Configuration Subset Header
- Color Camera Function Subset Header
- Registry Value Feature Descriptor for sensor group ID
- Registry Value Feature Descriptor for sensor group name
- Registry Value Feature Descriptor for enabling still image capture
- Registry Value Feature Descriptor for enabling Platform DMFT
- IR Camera Function Subset Header
- Registry Value Feature Descriptor for sensor group ID
- Registry Value Feature Descriptor for sensor group name
- Registry Value Feature Descriptor for registering the camera as a sensor camera
The firmware will have a handler for the vendor request that will return the following MS OS 2.0 descriptor for the imaginary device described at the beginning of this section.